\qquad
\qquad
Number and show all work on a separate sheet of paper. NO WORK, NO CREDIT!!! Write your answers in the column to the right.

EQUATION BANK

$$
\begin{array}{lll}
\sum_{k=0}^{n} \frac{n!}{(n-k)!k!} a^{n-k} b^{k} & a_{n}=a_{1}+(n-1) d & S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right) \\
S=\frac{a_{1}}{1-r} & S_{n}=\frac{n}{2}\left[2 a_{1}+(n-1) d\right] & S_{n}=\frac{a_{1}-a_{n} r}{1-r} \\
a_{n}=a_{1} r^{n-1} & S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} &
\end{array}
$$

1. Find the $22 n d$ term of the arithmetic sequence in which $a_{1}=-5$ and $d=7$.
2. Write an equation for the nth term of the arithmetic sequence $18,11,4,-3, \ldots$

3 . Find the three arithmetic means between 56 and 28.
4. Find S_{n} for the arithmetic series in which $a_{1}=10, d=-6$, and $a_{n}=-50$
5. Evaluate $\sum_{n=2}^{13}(3 n+1)$.
6. Find the fifth term of the geometric sequence for which $\mathrm{a}_{1}=243$ and $\mathrm{r}=-1 / 3$.
7. Find the equation for the nth term of the geometric sequence $36,12,4, \ldots$
8. Find four geometric means between 3 and 96 .
9. Find the sum of the first 6 terms of the geometric series $4-2+1-\ldots$
10. Find a_{1} in a geometric series for which $\mathrm{S}_{\mathrm{n}}=-364, r=-3$, and $\mathrm{n}=6$.
11. Evaluate $\sum_{n=1}^{5}\left(-\frac{1}{2}\right)^{n-1}$.
12. Find the sum of the infinite series $1 / 8-3 / 16+9 / 32-27 / 64+\ldots$, if it exists.
13. Evaluate $\sum_{n=1}^{\infty}-2\left(-\frac{5}{8}\right)^{n-1}$.
13. \qquad
14. \qquad
14. Write $0 . \overline{36}$ as a fraction.
15. Expand $(3 r+s)^{5}$.
15. \qquad
16. \qquad

