Chaptor	
	•

Name _____

Period _____

#	Date	Section & Topic/Activity	Page

Chapter	:

_

Name _____

Period _____

#	Date	Assignment	Page	Score

Date	Test/Project	Score

6.1 Properties of Exponents (With Negative Exponents)

Name of Property	Formula
1	
2	
3	
4	
5	
6	
7	
Simplifying Expressions A monomial expression is in simplified form when:	
1	
2	
3	
Example 1: Simplifying Expressions Using Seve	ral Properties
Simplify. Assume that no variable equals 0.	
a) $(4d^2t^5v^{-4})(-5dt^{-3}v^{-1})$	b) $(-2b^{-2}c^3)^3$
c) $\frac{(-m^4)^3}{(m^2)^3}$	d) $\left(\frac{2x^3y^2}{2x^3}\right)^{-2}$
$(2m^2)^{-2}$	$\left(-x^2y^5\right)$
Example 2: Scientific Notation *A number is in	scientific notation when it is in
a) The density of an object is equal to its mass divid	ed by its volume. A dumbbell has a mass of 9 x 10^3
grams and a volume of 1.2×10^3 . What is the der	nsity of the dumbbell?
b) When light passes through water, its velocity is re 1.86 x 10 ⁵ miles per second, at what velocity does notation.	duced by 25%. If the speed of light in a vacuum is s it travel through water? Write you answer in scientific

6.3 Dividing Polynomials (Day One)

In section 6.1, you learned to divide monomials. You can divide a polynomial by a monomial by using those same skills.

Example 1: Divide a Polynomial by a Monomial

a) $\frac{9x^2y^3 - 15xy^2 + 12xy^3}{3xy^2}$	b) $\frac{16a^5b^3 + 12a^3b^4 - 20ab^5}{4ab^3}$
c) $(20c^4d^2f - 16cf + 4cdf)(4cdf)^{-1}$	d) $(18x^2y+27x^3y^2z)(3xy)^{-2}$
Example 2: Long Division (Quotient with No R	emainder)
a) $(x^2 + 7x - 30) \div (x - 3)$	b) $(x^3 - 3x^2 + x - 3) \div (x^2 + 1)$
Example 3: Long Division (Quotient with Remaind	ainder)
a) $(x^2 - 3x - 7) \div (x + 2)$	b) $(2x^3 + 3x - 14) \div (x + 3)$

6.3 Dividing Polynomials (Day Two)

6.4 Polynomials Functions (Day One)

End Behavior

Example 3: Graphs of Polynomial Functions

For each graph,

1) describe the end behavior,

Graphing Polynomials

For each of the following polynomial functions, write the degree and find the given value.

1. $f(x) = x^3 - 3x^2 + 2x - 1; f(2)$ 2. $g(x) = 3x - x^2 + x^4 - 2x^3; g(1)$ 3. $h(x) = x^5 - x^3 + 1; h(3)$

For each of the following polynomial functions:

- a) find the zeros of the polynomial
- b) find the degree of the polynomial
- c) graph the polynomial. (HINT: Factor when necessary.)
- 4. f(x) = x(x-2)(x+3)5. g(x) = (x-1)(x-3)(x+4)6. $h(x) = (x-1)(x-3)^2$ 7. $f(x) = x^2(x-4)$ 8. g(x) = -x(x+1)(x-3)9. $h(x) = x^3 2x^2 8x$ 10. $f(x) = x^4 4x^3 + 4x^2$ 11. $g(x) = -2x^4 + 8x^2$

Write a possible polynomial function, in factored form, for each of the following graphs. 12. 13. 14.

6.6 Solving Polynomial Equations

	IMARY	Factoring Technique
Number of Terms	Factoring Technique	General Case
any number	Greatest Common Factor (GCF)	$a^{3}b^{2} + 2a^{2}b - 4ab^{2} = ab(a^{2}b + 2a - 4b)$
two	Difference of Two Squares Sum of Two Cubes Difference of Two Cubes	$a^{2} - b^{2} = (a + b)(a - b)$ $a^{3} + b^{3} = (a + b)(a^{2} - ab + b^{2})$ $a^{3} - b^{3} = (a - b)(a^{2} + ab + b^{2})$
three	Perfect Square Trinomials	$a^{2} + 2ab + b^{2} = (a + b)^{2}$ $a^{2} - 2ab + b^{2} = (a - b)^{2}$
	General Trinomials	$acx^2 + (ad + bc)x + bd = (ax + b)(cx + d)$
four or more	Grouping	ax + bx + ay + by = x(a + b) + y(a + b) $= (a + b)(x + y)$
Step 1:		
tor each polynom $8yz - 6z - 12y$ -	ial completely. $+9$ b) $y^2 - 5y$	$z + 4$ c) $z^3 + 125$
$t^{3} - 8$	e) $3ax - 1$	$5a + x - 5$ f) $2b^2 + 13b - 7$
Shanter 5, you lea	rned to solve quadratic equations I	by factoring and using the Zero Product Property.
x can extend these x mple 2: Solve F $x^4 - 29x^2 + 100$	e techniques to solve higher-degree Polynomial Equations $0=0$ b	e polynomial equations. 9) $x^3 + 8 = 0$

11.7 The Binomial Theorem

Pascal's Triangle

A triangular array of numbers such that the (n + 1)th row is the coefficient of the terms of the expansion $(x + y)^n$ for n = 0, 1, 2,...

Notice that **each row begins and end with 1**, and **each coefficient is the sum of the two coefficients above it** in the previous row.

Example 1: Use Pascal's Triangle Expand each power.

a) $(w + z)^5$ b) $(t-s)^6$ c) $(x+2y)^5$ d) $(5x - 2y)^4$