# **Writing Exponential Functions**

- 1. The graph of which exponential function passes through the points (0, 4) and (1, 24)?
  - **A.**  $y = 4(6)^x$
- **B.**  $y = 3(8)^x$
- **C.**  $y = 2(2)^x$
- **D.**  $y = 10(3)^x$
- 2. Use the equation of the exponential function whose graph passes through the points (0, -3) and (2, -48) to find the value of y when x = -2.
- C.  $-\frac{3}{16}$
- **D.** 48
- Use the equation of the exponential function whose graph passes through the points (0, -2) and (2, -50) to find the value of y when x = -2.
  - 100
- **B.** 50

## Logarithmic/Exponential Forms

- **4.** Write the equation  $4^3 = 64$  in logarithmic form.
  - **A.**  $\log_4 3 = 64$
- **B.**  $\log_3 4 = 64$  **C.**  $\log_{64} 4 = 3$
- **D.**  $\log_4 64 = 3$
- 5. Write the equation  $\log_{12} 144 = 2$  in exponential form.
  - **A.**  $144^2 = 12$
- **B.**  $12^2 = 144$
- $C. 2^{12} = 144$
- **D.**  $144^{12} = 2$
- 6. Write the equation  $6561^{\frac{1}{4}} = 9$  in logarithmic form.
  - **A.**  $\log_{1} 9 = 6561$

**B.**  $\log_{6561} 9 = \frac{1}{4}$ 

**C.**  $\log_9 6561 = \frac{1}{4}$ 

**D.**  $\log_{\frac{1}{4}} 6561 = 9$ 

# Solving Exponential & Logarithmic Equations

- 7. Solve  $\left(\frac{1}{36}\right)^n = 216^{n+5}$ .
  - **A.** 10
- **B.** 3

- $C_{-3}$
- **D.** -10

- 8. Solve  $\log_1 x = -1$ .
- **B.** -5
- C. 5

- 9. Solve  $\log_4(m-3) + \log_4(m+3) = 2$ .
  - A.  $\sqrt{11}$
- **B.** 5
- **C.** 1
- **D.** -5.5

- **10.** Solve  $\log_6 10 + \log_6 x = \log_6 40$ .
  - **A.** 180

- C. 5
- **D.** 30

- 11. Solve  $\ln(x+2) = 3$ .
  - **A.** 22.0855
- **B.** 18.0855
- **C.** 20.0855
- $\mathbf{D}_{\bullet} 0.9014$

- 12. Solve  $4 + 3e^{5x} = 27$ .
  - **A.** 0.4074
- **B.** 0.4394
- C. 2.0369
- **D.** 0.1769

### **Arithmetic Means**

- Find the two arithmetic means between 6 and 30.
  - **A.** 12, 24
- **B.** 14, 22
- C. 12, 18
- **D.** 18, 18
- Find the two arithmetic means between 4 and 22.
  - **A.** 10, 16
- **B.** 8, 16
- C. 8, 12
- **D.** 13, 13

### **Arithmetic Series**

- 3. Find  $S_n$  for the arithmetic series in which  $a_1 = 4$ , d = 3, and  $a_n = 61$ .
- **B.** 1280

- **4.** Find the sum of the arithmetic series  $8+5+2+(-1)+\cdots+(-13)$ .

- **B.** -20
- C. 50
- 5. Find  $S_n$  for the arithmetic series in which  $a_1 = 3$ ,  $d = \frac{1}{2}$ , and  $a_n = \frac{17}{2}$ .
  - A. 27
- **B.** 54
- C.  $\frac{139}{2}$
- **D.** 69
- 6. Find  $S_n$  for the arithmetic series in which  $a_1 = 3$ ,  $d = \frac{1}{2}$ , and  $a_n = 15$ .
  - A. 225
- **B.** 9
- C. 45
- **D.** 210

#### Terms of a Geometric Sequence

- 7. Find the sixth term of the geometric sequence for which  $a_1 = 4$  and r = 3.
  - **A.** 247
- **B.** 972
- **C.** 733
- **D.** 2916
- 8. Find the sixth term of the geometric sequence for which  $a_1 = 5$  and r = 3.
  - **A.** 1215
- **B.** 3645
- C. 9375

# ALSO... Try to do problem #23 on page 639 in your textbook!

# Finite & Infinite Geometric Series

- 9. Find the sum of the geometric series  $128 64 + 32 \cdots$  to 8 terms.
  - A. 85
- B. 255
- **C.** 86

- 10. Find  $\sum_{i=1}^{n} 5(-4)^{n-1}$ .
  - A. 6825
- $B_{\bullet} 4095$
- **C.** −1023
- **D.** -5120

- 11. Find  $\sum_{i=1}^{7} 4(-3)^{n-1}$ .
  - **A.** −2186
- **B.** 2188
- C. -728
- **D.** 2916

- 12.  $5 + 4 + \frac{16}{5} + \cdots$  **A.** 20
- **B.** 25
- C.  $\frac{25}{4}$
- D. does not exist

- 13.  $4+3+\frac{9}{4}+\cdots$ 
  - **A.**  $\frac{16}{7}$
- **B.** 16
- **C.** −12
- D. does not exist

- 13.

## **Fundamental Counting Principle**

- 1. **LICENSE PLATES** A license plate has one letter (not I or O) followed by five digits. How many different plates are possible?
  - **A.** 1200
- **B.** 2,400,000
- C. 725,760
- **D.** 100,000
- 2. How many 3-letter identification codes are possible if no letter is repeated?
  - A. 17,576
- **B.** 2600
- C. 78
- **D.** 15.600
- 3. How many 5-digit codes are possible if 0 cannot be used and no digit can be repeated?
  - A. 15,120
- **B.** 45
- C. 30,240
- **D.** 59,049

## **Permutation & Combinations**

- 4. A group has 6 men and 5 women. How many ways can a committee of 3 men and 2 women be formed?
  - A. 200
- **B.** 150
- C. 7200
- **D.** 2400
- 5. A clown has 7 balloons, each a different color. There are 5 children. How many ways can the clown give each child a balloon?
  - **A.** 21
- **B.** 5040
- C. 42
- D. 2520

### Probability - Independent VS Dependent & Mutually Exclusive VS Inclusive

- 6. A red die and a blue die are tossed. What is the probability that the red die shows a 5 and the blue die shows an even number?
  - **A.**  $\frac{1}{36}$
- **B.**  $\frac{1}{18}$
- C.  $\frac{1}{12}$
- **D.**  $\frac{2}{3}$
- 7. Tickets are numbered 1 to 50 and are placed in a box. Three tickets are drawn at random without replacement. What is the probability that the numbers are all greater than 35?
  - **A.**  $\frac{27}{1000}$
- **B.**  $\frac{13}{560}$
- C.  $\frac{3}{10}$
- **D.**  $\frac{1}{7840}$
- 8. From 4 yellow and 9 blue marbles, 3 are selected. What is the probability that all 3 are yellow or all 3 are blue?
  - **A.**  $\frac{4}{143}$
- **B.**  $\frac{4}{13}$
- C.  $\frac{42}{143}$
- **D.**  $\frac{84}{143}$
- 9. A card is drawn from a deck of cards. What is the probability of drawing a club or a face card? (*Hint*: A face card is a jack, queen, or king.)
  - **A.**  $\frac{25}{52}$
- **B.**  $\frac{3}{13}$
- C.  $\frac{11}{26}$
- **D.**  $\frac{7}{13}$
- 10. A red die and a blue die are tossed. What is the probability that the red die shows a 3 and the blue die shows a number greater than 3?
  - **A.**  $\frac{1}{10}$
- **B.**  $\frac{1}{5}$
- C.  $\frac{3}{10}$
- **D.**  $\frac{3}{5}$

10.

11.

- 11. A card is drawn from a standard deck of cards. What is P(heart or a 6)?
  - **A.**  $\frac{9}{26}$
- **B.**  $\frac{17}{52}$
- **C.**  $\frac{1}{4}$
- **D.**  $\frac{4}{13}$

| ΔΙ | a | e | h | ra | 2 | C | P |
|----|---|---|---|----|---|---|---|
|    |   |   |   |    |   |   |   |

**Chapter 12 Spring Review Worksheet** 

| Name | Period |  |
|------|--------|--|
|      |        |  |

## Mean, Median, and Mode

12. Which measure of central tendency is not a good representation of the data?

A. mean

B. mode

C. median

D. middle

| Record Low Temperatures in Honolulu, HI (°F) |     |     |     |     |     |     |     |     |     |     |     |
|----------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Jan                                          | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec |
| 52                                           | 53  | 55  | 56  | 60  | 65  | 66  | 67  | 66  | 61  | 57  | 54  |

Source: www.weather.com

13. Which measure of central tendency is not a good representation of the data?

A. middle

B. median

C. mode

D. mean

| Record High Temperatures in Anchorage, Alaska (°F) |     |     |     |     |     |     |     |     |     |     |     |
|----------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Jan                                                | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec |
| 50                                                 | 48  | 51  | 65  | 77  | 85  | 82  | 82  | 73  | 61  | 53  | 48  |

Source: www.weather.com

#### **Normal Distribution**

14. CAR SALES The mean stay of a car on a

lot before being sold is 21 days, with a standard deviation of 3 days. The lengths of stay are normally distributed. What percent of the cars are sold after having been on the lot between 18 and 24 days?

A. 95%

**B.** 34%

C. 68%

D. 5%

15. **POTTERY** The diameters of pottery

bowls are normally distributed. The

mean of the diameters is 22 cm and the standard deviation is 2 cm. What percent of the bowls have diameters between 18 and 26 cm?

**A.** 13.5%

**B.** 34%

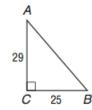
C. 68%

D. 95%

12.

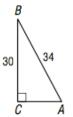
13. \_\_\_\_\_

14.


15. \_\_\_\_\_

# **Trig. Ratios**

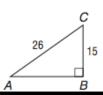
- 1. Find the value of  $\csc A$ .


- **C.**  $\frac{17}{8}$
- 2. Which equation can be used to find x?
  - **A.**  $\sin 21^\circ = \frac{8}{r}$  **B.**  $\tan 21^\circ = \frac{x}{8}$

  - C.  $\tan 21^\circ = \frac{8}{x}$  D.  $\sin 21^\circ = \frac{x}{8}$
- Find A to the nearest degree.
  - A. 49°
- B. 37°
- C. 41°
- **D.** 53°



- Find the value of sec A.
  - **A.**  $\frac{17}{8}$


- **D.**  $\frac{17}{15}$



- 5. Which equation can be used to find x?
  - **A.**  $\sin 32^{\circ} = \frac{x}{7}$  **B.**  $\cot 32^{\circ} = \frac{7}{x}$
  - **C.**  $\tan 32^{\circ} = \frac{x}{7}$ 
    - **D.**  $\cos 32^{\circ} = \frac{x}{7}$



- Find A to the nearest degree.
  - A. 55°
- **B.** 30°
- C. 35°
- **D.** 60°



# **Degrees and Radians**

- Rewrite 90° in radian measure.

- 8. Rewrite  $\frac{\pi}{6}$  radians in degree measure.
  - A.  $30\pi^{\circ}$
- **B.** 30°
- C. 120°
- **D.** 60°

- 9. Rewrite  $\frac{5\pi}{4}$  radians in degree measure.
  - A. 450°
- **B.** 225°
- C. 225π°
- **D.** 112.5°

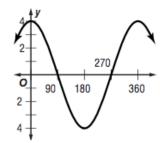
## **Exact Values**

- 10. Find the exact value of cot 450°.
  - **A.** 0
- B. undefined
- **C.** 1
- **D.** -1

- 11. Find the exact value of  $\cos\left(-\frac{\pi}{4}\right)$ .
  - **A.**  $\frac{\sqrt{2}}{2}$
- **B.**  $-\frac{\sqrt{2}}{2}$
- C.  $\frac{\sqrt{3}}{2}$
- **D.**  $-\frac{\sqrt{3}}{2}$

- 12. Find the exact value of sin 870°.
  - **A.**  $-\frac{1}{2}$
- **B.**  $\frac{1}{2}$
- **C.**  $-\frac{\sqrt{3}}{2}$
- **D.**  $\frac{\sqrt{3}}{2}$

# **Graphs of Trigonometric Functions**


13. Which equation is graphed?

**A.** 
$$y = 4 \sin \theta$$

**B.** 
$$y = 4 \cos \theta$$

C. 
$$y = \sin 4\theta$$

**D.** 
$$y = \cos 4\theta$$



- **14.** Find the amplitude of  $y = 6 \sin \theta$ .
  - **A.** 6
- Β. π
- **C.** −6
- $\mathbf{D}$ .  $2\pi$

- **15.** Find the period of  $y = 5 \cos \theta$ .
  - **A.** −5
- **B.** 5
- **C.** π
- $\mathbf{D}$ .  $2\pi$