Chapter

Name

\#	Date		Pection \& Topic/Activity	

Chapter \qquad —__

Name

Period \qquad

\#	Date		Pssignment	Page	Score

Date	Test/Project	Score

12.6 Statistical Measures

Measures of Variation or Dispersion

Used to measure how spread out or scattered a set of data is. Variance and standard deviation are measures of variation that indicate how much the data differ from the mean.

To find the variance of a set of data, follow these steps.
Step 1: \qquad Step 4:
Step 2: \qquad Step 5:
Step 3: \qquad

* The standard deviation is the square root of the variance.

Example 1: Variance \& Standard Deviation

a) The table at the right shows the lengths in thousands of miles of some of the longest rivers in the world. Find the standard deviation for these data.

River	Length (thousands of miles)
Nile	4.16
Amazon	4.08
Missouri	2.35
Rio Grande	1.90
Danube	1.78

b) A teacher has the following test scores: $100,4,76,85$, and 92 . Find the standard deviation for these data.

Example 2: Variance \& Standard Deviation with Stem-and-Leaf Plots

In a stem-and-leaf plot, data is organized in two columns. The greatest place value of the data is used for the stems. The next greatest place value forms the leaves. Stem-and-leaf plots are useful for organizing long lists of numbers.
a) Write the list of numbers that represent the data in the following stem-and-leaf plots.
(1)

Stem	Leaf
1	18
2	569
3	135578999
4	$00 \quad 3 \mid l=3.1$

(2)

Stem	Leaf
1	81
2	569
3	919879535
4	00

b) Find the standard deviation for the data in Example 2, 1a.

12.6/12.7 Statistical Measures \& The Normal Distribution

Measures of Central Tendency

Used to represent the center or middle of the data. The most commonly used measures ot central tendency are the mean, median, and mode. When deciding the measure of central tendency to use to represent a set of data, look closely at the data itself

Use When...

Example 1: Choose a Measure of Central Tendency

a) The table at the right shows the populations of the six New England capitals. Which would be the most appropriate measure of central tendency to represent the data. Explain why and find that value.

City	Population (rounded to the nearest 1000)
Augusta, ME	19,000
Boston, MA	589,000
Concord, NH	37,000
Hartford, CT	122,000
Montpelier, VT	8,000
Providence, RI	174,000

Source: wwifactfinder.census.gov
b) A salesperson had sales of $\$ 11,000, \$ 15,000, \$ 11,000, \$ 16,000, \$ 12,000$, and $\$ 12,000$ in the last six months. Which measure of central tendency would he be likely to use to represent these data when he talks with his supervisor? Explain why and find the value.

12.6/12.7 Statistical Measures \& The Normal Distribution

Normal \& Skewed Distributions

Continuous probability distributions are represented by curves. The types of continuous distributions are:
(a) Negatively skewed
(b) Normal (no skew)
(c) Positively skewed

Negative direction
The normal curve represents a perfectly symmetrical distribution

Example 2: Classify a Data Distribution

Determine whether the data in each table appear to be positively skewed, negatively skewed, or normally distributed. Make a histogram of the data.
a) $\{27,24,29,25,27,22,24,25,29,24,25,22,27,24,22,25,24,22\}$

b)

Shoe Size	4	5	6	7	8	9	10
No. of Students	1	2	4	8	5	1	2

12.7 The Normal Distribution

Use Normal Distributions

Standardized test scores, the lengths of newborn babies, the useful life and size of manufactured items, and production levels can all be represented by normal distributions. Normal distributions have the following properties:

- the graph is maximized at the mean
- mean, median, and mode are about equal

Examples: Normal Distributions

a) The number of eggs laid per year by a particular breed of chicken is normally distributed with a mean of 225 and a standard deviation of 10 eggs.

(1) About what percent of the chickens will lay between 215 and 235 eggs per year?
(2) In a flock of 400 chickens, about how many would you expect to lay more than 245 eggs per year?
b) The diameter of bolts produced by a manufacturing plant is normally distributed with a mean of 18 mm and a standard deviation of 0.2 mm .

(1) What percent of bolts coming off of the assembly line have a diameter greater than 18.4 mm ?
(2) What percent have a diameter between 17.8 and 18.2 mm ?

